
Software Design for Maintainability, Page 1 of 6
Technique DFE-6

Page DFE-23

Technique Apply maintainability concepts to development of software in the early
phases of the lifecycle.

Software Design for Maintainability

Establish Design Criteria for Maintainable Software Products to
Increase System Availability and Decrease Overall Development
and Operating Costs

Benefits By designing software products that are maintainable we can update
and enhance fielded software much faster and at lower cost. Software
can be reused, thus alleviating costly update time. Also, any faults
found in the software can be easily diagnosed and corrected, reducing
downtime and meeting delivery schedules. Software maintainability
ensures system availability by reducing system downtime.

Key Words Maintainable Software, Modular Design, Object Oriented Design,
Coding Standards, Naming Convention

Application
Experience

International Space Station Program

Technical
Rationale

Because of increases in the size and complexity of software products,
software maintenance tasks have become increasingly more difficult.
Software maintenance should not be a design afterthought; it should be
possible for software maintainers to enhance the product without
tearing down and rebuilding the majority of code.

Contact Center Johnson Space Center (JSC)

Software Design for Maintainability, Page 2 of 6
Technique DFE-6

Page DFE-24

Software Design for Maintainability
Technique DFE-6

Introduction

Recently, software products have exhibited a
dramatic growth in size, complexity, and life
cycle cost (LCC). In a large system, software
LCC typically exceeds that of hardware, with
80-90 percent of the total system cost going into
software maintenance to modify the delivered
program to meet the changing and growing
needs of users. The total system cost includes
hardware, software, acquisition, development,
and deployment costs.

Changes over the life of a program are inevit-
able, even if the program has met all its design
requirements. Software changes are needed to
adapt to increased functional requirements and
different system configurations brought about by
these changes.

One of the most urgent concerns in the com-
puter industry is the need to maintain and
enhance the software product at faster rates and
at lower costs. To meet this objective, better,
more maintainable software must be designed.

Maintainable Software

Maintainable software, which facilitates the
correction of errors and deficiencies, can be
expanded or contracted to satisfy new or
changing requirements, which may include en-
hancing existing functions, modifying for hard-
ware upgrades, and correcting code errors. The
means of achieving this goal depends on not
only one technique, but a combination of many
tools and techniques, including the following:

a. Early planning: anticipating what and how
programs might be modified at a later stage.

b. Modular design: defining subsets and
simplifying functionality (i.e., one module per-
forms only one function).

c. Object-oriented design: encapsulating both
methods and data structures to achieve a higher
level of independence than that of modular
design.

d. Uniform conventions: facilitating error
detection and debugging.

e. Naming conventions: providing under-
standable codes.

f. Coding standards, comments, and style:
enhancing readability of the program.

g. Documentation standards.

h. Common tool sets.

i. Configuration Management

It should be noted that topics d through h can all
come under the classification of configuration
management, which as a subject in and of itself
is very important to maintainability, but is listed
by itself to show importance.

Early Planning

As with anything else, early planning puts design
problems into perspective, provides good
strategy, and is the most cost-effective way for
modifying or adding features to software
products at some later time. Early in the
definition phase, expected changes should be
identified and prioritized so that their
considerations can result in an architecture
receptive to change.

The system functionality should be decomposed
into manageable segments for which software

Software Design for Maintainability, Page 3 of 6
Technique DFE-6

Page DFE-25

modules may be built. The format of these acknowledgment in building an operating
modules should be standardized so that code can system. The two functions seem closely related
be added, deleted, or modified to incorporate and for the sake of reliability one may insist on
expected as well as unexpected changes. This a "handshake" with each exchange of synchro-
helps to ensure that minimum interface nization signals. If later an application is
alterations will be required to implement a encountered in which synchronization is needed
change. Also, some particularly volatile areas more frequently, it may be found that there is no
should have their parametric values stored in simple way to strip the message sending routine
databases to facilitate their change. Identifying away from the synchronization routines.
expected changes early in the definition phase,
and making allowances for unexpected changes, The irony of such a situation is that the
makes for a more maintainable software mechanism could have been built effectively and
product. separately from a simpler mechanism.

Configuration Management

Configuration management of software is many similar functions. For example, a generic
probably the single most important management input/output routine will save coding time and
and maintainability concept utilized in software make it convenient for users to retrieve and use
development Utilization of coding standards, the module. Moreover, the modules can be
documentation standards, release standards, saved in a software repository; e.g., FORTRAN
common languages and other methods will Mat-Lib, and made available to the public.
provide for good configuration management. A
plan should be developed very early in the Identifying potentially desirable modules, how-
development cycle for managing the ever, is a demanding intellectual exercise in
configuration of the software under which the software designer first searches for the
development, and that plan should be followed minimal module that might conceivably perform
rigorously. If configuration management breaks a useful service and then searches for a set of
down, the code under development is doomed to minimal increments to the systems. Each
be extremely troublesome when release for increment is small-sometimes so small that it
operations. seems trivial.

Modular Design

Modularized software is best structured so that discussed above. Identifying minimal modules is
high probability changes do not affect the inter- difficult, however, because minimal system
face of widely used modules. However, one of programs are not usually requested. Minimal
the most commonly encountered errors is when modules are useful if the software family is
two or more simple functions are combined into going to be developed but are not usually worth
one module because the functions seem too building by themselves. Similarly, maximum
simple to separate. flexibility is obtained by looking for the smallest

For example, one might be tempted to combine
synchronization and message sending and

Modular design also provides reusable code and
reduces redundant coding that might occur in

The minimalist approach seeks to avoid a
module that performs more than one function as

possible increments in capability.

Software Design for Maintainability, Page 4 of 6
Technique DFE-6

Page DFE-26

Use of ADA Programming Language

The Department of Defense (DoD) undertook
an effort some years back to develop a standard Each state change is usually simple to program
language that would provide for many things, by itself, so the program is divided into relatively
including software maintainability. ADA simple pieces. Each object, in effect, performs
programming language, the result of this effort, a specific function independent of other objects.
will provide software maintainability, as a rule, It responds to messages, not knowing why the
if utilized properly with other concepts listed message was sent or what the consequences of
here. Other languages can be maintainable as its actions will be.
well, but much research and planning must go
into the language chosen for development, and Because objects act individually, each class
ADA is always a good place to start, especially which is made up of these objects can be
in the development of government applications. changed largely independent of other classes.

Object-Oriented Design

Object-Oriented Design is a more recent
approach in restructuring programs. It is
intended to make program tasks more
independent of each other and therefore easier to
maintain.

Normally, as taught in most computer courses,
structured programming helps in dealing with
the complexities and reduction of "spaghetti" in Uniform Conventions
the code; however, structured programming is
still based on the expected sequence of
executing instructions. Attempting to design
and debug programs by thinking through the
order in which the computer does things
ultimately leads to software that nobody can
fully understand. With object-oriented
techniques, a designer generates code based on
objects and their behaviors. Objects, which
might be real or abstract, could include an
invoice, organization, order-filling process, or
icon on a screen that a user points to and opens.
An object's behaviors are expressed by its
contained data structures and operations, which
are also called "methods." Most systems can be
built without having to think about loops,
branches, and program-control structures,
because the object-oriented technique is an

event-driven programming approach in which
events cause changes in the state of objects.

This makes the class relatively easy to test and
modify.

Object-oriented systems are much easier to
maintain than conventional systems. Space and
other considerations make it impossible to dis-
cuss the object-oriented concept here. Readers
to whom this concept is new are encouraged to
pursue it further in object-oriented program-
ming.

Software coding standards and naming conven-
tions are also important in producing maintain-
able code; therefore, they must be established
during the development process. All production
of new code should be done according to these
standards, along with all program extension and
repair work, during both the development and
maintenance phases. All software development
processes should be documented, consistent and
repeatable.

The benefit to the maintenance programmer is
that by learning the formal aspects and naming
conventions of one segment of the system
software, he or she will know these aspects and
conventions for the other segments. Error
detection and debugging are facilitated with

Software Design for Maintainability, Page 5 of 6
Technique DFE-6

Page DFE-27

more effort concentrated on understanding the (3) Uniform presentation of information
logic of the program, even when working with a throughout the source code; the
new segment. grouping of all data declarations.

Naming Conventions

The naming standards should encompass the (5) Layout of source code listings.
systematic assignment of mnemonic terms
chosen to suggest their own interpretation by (6) Conditions under which comments are
carrying as much information about their provided and format to be used.
respective variables as possible. It would be
desirable, from a maintenance programmer's (7) Size of code aggregates (100-200
point of view, if there were a one-to-one corre- executable, nonexpandable statements).
spondence between variable names throughout
the program system. Global variables should be b. Naming: defines rules and conventions
defined in a common glossary with their names governing the selection of identifiers used in the
the same in all routines. Local model variables source code listing.
are those having a meaning in the model or
system specification but appear only in one
routine; names of these may duplicate other local
variable names, but not global names. The reasoning for documentation standards is

Coding Standards, Comments and Style

Since easy-to-read code is a definite plus to the documentation simplifies the process of
software maintainer, one set of coding standards familiarization with any given project and assists
should be used to develop the documentation, the effort to make any given information easier
flowchart construction, input/output processing, to locate. It also promotes understanding of
error processing, module interfacing, and what the current status of a project is, what
naming of modules and variables. This con- changes have been made, and the reasoning
sistency, which promotes general understanding, behind various activities during the development
has prompted the Government to stipulate in process.
software programming contracts the inclusion of
the following software coding:

 a. Presentation style: describes the rules and A uniform environment and a standardized set of
conventions for the format of the source code development tools adds several points important
that may include paper listings, listings stored on to increasing the maintainability of software.
electronic media, or both: First, is the ability to reuse validated code. If

(1) Indentation and spacing. changes are similar to something that has been

(2) Use of capitalization. to use code that has already been proven with

(4) Use of headers.

Documentation Standards

nearly identical to that for coding standards.
Standardized document formats are necessary
for good maintainability. Consistently formatted

Common Toolsets

changes must be made to the software, and the

used previously, it is very convenient to be able

the development tools being utilized. Secondly,

Software Design for Maintainability, Page 6 of 6
Technique DFE-6

Page DFE-28

a common toolset and environment allow for 5. "Third International Conference on Soft-
program and code portability between stations. ware Engineering," May 10-12, 1978, Atlanta,
As the environment is common, no conversions Georgia.
are necessary, and program compilation
differences are negated. A standardized 6. "Annual Reliability and Maintainability
environment also reduces time necessary for Symposium," January 26-28, 1993, Atlanta,
training. Much less time is necessary to train Georgia.
people on one system than to train them for
multiple toolsets. This also has the advantage of
raising the average level of knowledge for that
one toolset, thereby increasing efficiency.
When one toolset is used for development, only
one set of software resource libraries is
necessary. All of this combines to decrease
necessary resources needed to develop and
maintain any given piece of software.

Conclusion

Software maintenance is a major cost contribu-
tor to software LCC. Maintenance is incurred
to both correct faults and enhance capability.
Therefore, designing code that minimizes
maintenance costs will effectively reduce the
LCC of operational software.

References

1. Capers Jones, "Programming Productivity:
Issues for The Eighties," ITT Programming
Technology Center, Stratford, Connecticut.

2. Tsun S. Chow, "Software Quality Assur-
ance: A Practical Approach," IEEE Computer
Society, Worldway Postal Center, Los Angeles,
California.

3. J. Martin and J. J. Odell, "Object-Oriented
Analysis and Design," Prentice Hall, Englewood
Cliffs, New Jersey.

4. Parish Girish, "Handbook of Software
Maintenance," John Wiley & Sons, New York.

